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Traces of a quantum antiresonance in a driven system
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It has been shown previously that classically chaotic kicked systems, whose unperturbed spectrum
possesses one energy scale, exhibit a quantum antiresonance (QAR) behavior. Under the QAR
condition, the quantum evolution is completely periodic. In this study we extend the conditions
under which this QAR occurs for the case of a two-sided kicked one-dimensional infinite potential

well.

It is then shown by a perturbative argument that this QAR affects the behavior of the

equivalent driven well, namely, the number of periods needed to leave the initial state has a sharp
peak around the QAR. We give numerical evidence that the antiresonance persists even for large
values of the perturbation parameter. This manifestation of the QAR is experimentally realizable
by looking at the absorption spectrum of a quantum well.

PACS number(s): 05.45.+b, 73.20.Dx

The study of “quantum chaos,” i.e., understanding the
fingerprints of classical chaos in quantum mechanics [1],
has led to the discovery of a variety of new quantum-
dynamical phenomena. Several such phenomena occur
in time-periodic systems described by the general Hamil-
tonian

H = Ho + H.f(t) , (1)

where Hj is some time-independent Hamiltonian, H;
represents a perturbation, and f(¢) is periodic with pe-
riod T, f(t +T) = f(t). In many cases, f(t) is cho-
sen, for simplicity, as a periodic § function, f(t) =
Ar(t) =322 6(t — sT), giving the well-studied class
of “kicked” systems. [2-12].

The quantum dynamics of time-periodic systems (1)
is governed by their quasienergy (QE) spectrum (i.e.,
the spectrum of the one-period evolution operator). Dif-
ferent properties of the QE spectrum lead to quantum-
dynamical phenomena having, in general, no classical
analog. (1) A pure point QE spectrum leads to quan-
tum suppression of chaotic diffusion in the kicked rotator
(KR) [2], dynamical localization [5,6], and quasiperiodic
recurrences [4]. (2) In cases where there is a mixture of
pure point, singular continuous, and absolutely contin-
uous spectra, anomalous quantum diffusion [8,9] occurs.
(3) A continuous spectrum manifests itself through quan-
tum diffusion. This happens for the kicked harmonic os-
cilator (“crystalline” resonance conditions) [12]. (4) Fi-
nally, the nongeneric case of quantum resonances [3], i.e.,
the ballistic (quadratic), rather then diffusive, increase of
the energy expectation value with time is due to an ab-
solutely continuous (band) QE spectrum, and occurs in
all the kicked systems.

A recently studied phenomenon for time-periodic sys-
tems is that of exactly periodic recurrences [10,13,14].
This phenomenon is defined, in general, by

UP=¢"®, (2)

where U is the one-period evolution operator for (1), e =%
is some constant phase factor (a ¢ number), and p is the
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smallest positive integer for which (2) is satisfied. Thus
pT is the recurrence period. This phenomenon, manifest-
ing itself in bounded, periodic variation of expectation
values, is diametrically opposite to the quantum reso-
nance (quadratic variation with time). We shall there-
fore refer to (2) as to the quantum antiresonance (QAR)
phenomenon.

The simplest class of systems considered are the two-
sided kicked rotors (TKR’s) [13,14], defined by the
Hamiltonian

2 . — . sT
H =5 +kV(9) > (—1)6(t——2-—) , (3)

8§=—00

where I is the moment of inertia, k is the kicking pa-
rameter, T is the time period, and V' (0) is a general pe-
riodic and analytic function of the angle #. Two-sided
kicking perturbations such as in (3) were considered in
several physical contexts [15] as approximations of sinu-
soidal driving potentials corresponding to ac electromag-
netic fields. By increasing k in the classical TKR, one
observes the typical transition from bounded to global
chaos [13], as in the KR case. The quantum dynamics is
governed, as usual, by the evolution operator U in one
period, e.g., fromt=—-0tot=T — O:

U = e—im8% gikV (8) g—iTa? ,—ikV (6) ’ (4)

where # = L/h = —id/d6, T = kT/(4I), and k = k/h.

A most distinctive feature of the quantum TKR is that
U becomes the identity operator for 7 = 27wm, an inte-
ger [since the operator exp(—iTf2) in (4) is clearly the
identity in this case]. This implies ezactly periodic re-
currences (with period 1) of an arbitrary wave packet
[13]. This phenomenon is referred to as quantum an-
tiresonance.

The previously described QAR was based on the fact
that the unperturbed evolution between successive kicks
is the identity operator so that the opposite sign kicks are
canceled. It is therefore clear that the same phenomenon
will occur for a two-sided kicked one-dimensional (1D)
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infinite potential well. In the present study, we show the
existence of a new antiresonance phenomenon for the case
of the linearly kicked one-dimensional potential well. The
new QAR occurs when the period of the kicks is half the
period needed for the more general QAR, as described
in Eq. (4). Thus, this QAR is, in some sense, a “pe-
riod halving” of the former, and specific to this special
case, as will be discussed below. It is then shown that
this new QAR, namely, the one that occurs when a com-
plete period of the perturbation is compatible with the
level spacing frequencies, affects the behavior of the cor-
responding driven system. In particular, in the region
of the QAR condition, the driven system becomes nearly
periodic. This may be considered as a “trace” of the ex-
act QAR in the kicked system. Numerical evidence for
this effect is presented, and experimental realizations are
discussed.
Consider the Hamiltonian

H:%’Hx 3 {8(t/T —m) — 6(t/T —m+1/2)},

’"Z_“’ (5)

defined in the infinite well z € [0, L]. We use the dimen-
sionless form, defined by the transformation 7 = 2nt/T,
X = X/L, and obtain the Schrodinger equation

_dyp Fie B -
ZE=%¢={— sza§+ﬁ;;X Z {8(7 — 2mm)

—6(7’—271'(m+1/2))}}1,/), (6)

where fog = h/(mwL?) and B = A\/(mw?L). The evolu-
tion operator thus takes the form

. infeff£ 92 —i B X inteffig? iB X
U = exp(iF) =e'™ 2 8o Vs ™ % Trglhen (7

Evidently, since the eigenvalues of the operator —&2
are A\, = n?7? with n integer, if f.g takes the values
heg = 4k/m? (k integer), exp(im282) is just the iden-
tity operator, and the free evolution of the system be-
tween two kicks turns out to be trivial. Since the two
kicks are of opposite sign the whole evolution operator is
also periodic. This is the usual quantum antiresonance.
However, we now show that for this special case, a QAR
exists also when A.g = 2k/7%. In order to do that, we
point out that

s hegr g2 i B —i. B . heff 52
e % % e X = e “eer’e“' 2 8!, (8)
i heff n2 (2 _pn? .
where (XD mn = Xmne 2 7 (M=) Since Xpn

takes the form

*,,:(,:m—_"ﬁz)z, m + n odd
Xmn = , m+neven, m#n 9)
1/2, m=n,

J

27
A®(m - n) ~ (ﬂ/heff)kT/ dty - -
0
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FIG. 1. Stroboscopic map of phase space trajectories for
the linearly driven well, for 8 = 0.01, and several initial con-
ditions.

it is clear that (X7)mn = —Xmn + 1, where 1 is the unit
matrix, and the whole evolution operator U is then

U =e F = ¢~ th/heer (10)

which is the identity operator up to a constant phase.
Thus, one obtains a “period halving” of the usual quan-
tum antiresonance.

We now turn to studying the driven version of this
problem. This system is classically chaotic [16] as shown
in Fig. 1. Its quantum behavior is described by the di-
mensionless Schrodinger equation

d Fie
Z_d%/:‘_ = Hep = {__ zﬁai + %Xcos('r)} . (11)

Clearly, due to the continuous character of the perturba-
tion, the argument leading to the exact QAR described
above is not valid for this Hamiltonian. However, as we
now show, traces of the exact periodicity found in the
kicked system in the QAR case are seen in the driven
system as well. In fact, kicked systems are widely used as
an approximation to cosinusoidally driven perturbations
[15]. This can be understood in terms of the relation

E G -s(7-(+3))

=4 i cos[(2n — 1)Qt], (12)

n=1

through which it is clear that in the limit where one may
neglect the effect of the higher frequencies, the kicks are
essentially the same as the first cosine term.

It turns out that under the condition fi.g = 21/7? the
QAR manifests itself in the perturbative expansion of the
time-dependent evolution operator. This can be shown
as follows. The transition probability (to order k in 3)
for a complete period is given in terms of a time-ordered
integral of the form

/27r At X1 (ty) - -- X1 (tn) cos(ty) - - - cos(ti). (13)
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Using the matrix representation of Xj(t):

(Xl)mn(t) — ane—itﬁ‘zﬂn—z(mz_nz), (14)

Eq. (13) takes the form

A®(m = n) ~ (B/heg)* Y Xmj Xjiga -

Jiy i de—1

X; T ZWdt zwdt it el 22 2
Xju_an 10 kexp | —ity—=m° (m® — j7)
o . 0

., he . . . he .
x exp (—thT“wzuf 5 ) - exp (—ztk—“ﬂ(ﬁ_l - nZ)) cos(ty) - - - cos(t). (15)

In the antiresonance case, fi.g = 2k/n2, all the frequen-
cies in the integrals are integers, and thus since the inte-
gral is over a complete period the only contribution comes
from the zero-mode terms. It is easy to see that even in
the most “soft” case, i.e., ] = 1, the first contribution to
the transition amplitudes is at least of order 8% (if the
ground state is populated). This is due to the fact that
to order 3* the integrand related to the transition m — n
contains the frequencies wyp, £ 1+ 1--- 1 [k times].
Since the smallest frequency is w1z = 3a, the first- and
second-order terms do not have any zero-frequency com-
ponents. Thus the integral over a whole period vanishes.

In order to confirm the above predictions, we have
solved the time-dependent Schrodinger equation numer-
ically, using a quality control Runge-Kutta method, for
various values of 8 and /g in the antiresonance region.
The results are shown in Fig. 2. We plot the inverse
of the probability to leave the initial state after one pe-
riod. This quantity describes approximately the amount
of time needed to leave the initial state. It is interesting
to note that the QAR traces persist even for large values
of B, up to B = 2. However, as (3 increases, the position
of the antiresonance is slightly shifted.

It is interesting to note that such a model system can in
fact be realized experimentally. Modern semiconductor
technology has enabled the fabrication of 1D quantum
wells [17]. Such a quantum well is fabricated by vary-
ing the alloy composition in a compound semiconductor
like Al,Ga;_.As along one dimension. Conduction elec-
trons in such structures experience an arbitrarily shaped
effective potential in the growth direction while remain-
ing free in the perpendicular plane. Quantum wells are
typically 200 — 300 meV deep with level spacing AF be-
tween several meV and 150 meV. These systems are of
special interest since they can be treated by means of
pure quantum mechanical considerations while they are
still experimentally accessible. Recently, there has been
interest in the behavior of such systems under the influ-
ence of an electromagnetic field [16,18-20]. The quantum
well structure can be considered as an analogue of an 1D
atom, and thus a study of the driven well may help us
learn about the interaction of atoms with high-field elec-
tromagnetic radiation. In the region where the electric
field is strong relative to the level spacing of the well,
one obtains a system where nonperturbative effects in
light-matter interaction can be studied. In fact, currently
there are some experiments carried out at UCSB with the
Free Electron Laser (FEL) in which an intense monochro-
matic far-infrared radiation is applied to a quantum well
[21]. Changing the frequency used, the well width and
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FIG. 2. The inverse of A, the probability of escaping from
the initial state after one period of the driving force, as a
fuction of #.g, for various values of 3. The stars correspond
to the numerical results and the continuous line is an inter-
polation curve to guide the eye. (a) 8=0.1; (b) 8=1.0; (c)
B=2.0.
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the intensity, a wide range of parameters may be ac-
cessed, including those that correspond to the QAR. The
QAR behavior can therefore be realized experimentally,
using a quantum well radiated by a far-infrared laser.
One should expect a sharp antipeak in the absorption
spectrum of the quantum well.

In conclusion, we have extended the concept of QAR
for a case in which the entire period of the perturbation
is in resonance with the level spacing frequencies. It has

been shown by theoretical arguments and numerical re-
sults that this effect persists for driven systems as well.
The conditions under which this effect occur can be re-
alized in experiments on quantum wells in far infrared
radiation.

We gratefully acknowledge I. Dana for most helpful
discussions and critical reading of the manuscript.
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